A Complex-Valued RTRL Algorithm for Recurrent Neural Networks

نویسندگان

  • Su Lee Goh
  • Danilo P. Mandic
چکیده

A complex-valued real-time recurrent learning (CRTRL) algorithm for the class of nonlinear adaptive filters realized as fully connected recurrent neural networks is introduced. The proposed CRTRL is derived for a general complex activation function of a neuron, which makes it suitable for nonlinear adaptive filtering of complex-valued nonlinear and nonstationary signals and complex signals with strong component correlations. In addition, this algorithm is generic and represents a natural extension of the real-valued RTRL. Simulations on benchmark and real-world complex-valued signals support the approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Generalization in Recurrent Neural Networks Using the Tangent Plane Algorithm

The tangent plane algorithm for real time recurrent learning (TPA-RTRL) is an effective online training method for fully recurrent neural networks. TPA-RTRL uses the method of approaching tangent planes to accelerate the learning processes. Compared to the original gradient descent real time recurrent learning algorithm (GD-RTRL) it is very fast and avoids problems like local minima of the sear...

متن کامل

Complex Extended Kalman Filters for Training Recurrent Neural Network Channel Equalizers

The Kalman filter was named after Rudolph E. Kalman published in 1960 his famous paper (Kalman, 1960) describing a recursive solution to the discrete-data linear filtering problem. There are several tutorial papers and books dealing with the subject for a great variety of applications in many areas from engineering to finance (Grewal & Andrews, 2001; Sorenson, 1970; Haykin, 2001; Bar-Shalom & L...

متن کامل

A conjugate gradient learning algorithm for recurrent neural networks

The real-time recurrent learning (RTRL) algorithm, which is originally proposed for training recurrent neural networks, requires a large number of iterations for convergence because a small learning rate should be used. While an obvious solution to this problem is to use a large learning rate, this could result in undesirable convergence characteristics. This paper attempts to improve the conve...

متن کامل

A Unifying View of Gradient Calculations and Learning for Locally Recurrent Neural Networks

In this paper a critical review of gradient-based training methods for recurrent neural networks is presented including Back Propagation Through Time (BPTT), Real Time Recurrent Learning (RTRL) and several specific learning algorithms for different locally recurrent architectures. From this survey it comes out the need for a unifying view of all the specific procedures proposed for networks wit...

متن کامل

On the improvement of the real time recurrent learning algorithm for recurrent neural networks

This paper reviews diierent approaches to improving the real time recurrent learning (RTRL) algorithm and attempts to group them into common frameworks. The characteristics of sub-grouping strategy, mode exchange RTRL, and cellular genetic algorithms are discussed. The relationships between these algorithms are highlighted and their time complexities and convergence capability are compared. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 16 12  شماره 

صفحات  -

تاریخ انتشار 2004